Abstract

Complex life cycles (CLCs) contain larval and adult phases that are morphologically and ecologically distinct. Simple life cycles (SLCs) have evolved from CLCs repeatedly in a wide variety of lineages but the processes that may underlie the transition have rarely been identified or investigated experimentally. We examined the influence of larval growth rate on the facultative expression of alternative life cycles (metamorphosis or maturation as gill-bearing adults [= paedomorphosis]) in the salamander Ambystoma talpoideum. We manipulated growth rates by altering the amount of food individuals received throughout larval development. The expression of alternative life cycles in A. talpoideum is influenced by growth via food levels, but the same growth rates at different points in the larval period elicit different responses. Individuals were more likely to metamorphose (i.e. express a CLC) when food levels and growth rates were high later in development and more likely to mature without metamorphosing (SLC) when growth rates were comparatively low during the same point in development. Growth rates at particular points in development, rather than overall larval growth rate, may be an important proximate factor in salamander life-cycle evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call