Abstract

Efficient microencapsulation of probiotics by most existing methods is limited by low throughput. In this work, Saccharomyces boulardii and Enterococcus faecium were microencapsulated by a method based on emulsion and internal gelation. The growth and survival of microencapsulated microbes under different stressors were investigated using free non-encapsulated ones as a control. The results showed that the prepared micro-beads by emulsion and internal gelation exhibited a spherical and smooth shape, with sizes between 300 and 500 μm. Both S. boulardii and E. faecium grew well and survived better when encapsulated in micro-beads. The survival rates were increased 25% and 40% for microencapsulated S. boulardii and E. faecium respectively when compared with non-encapsulated controls under high temperature and high humidity. The increases of survival rates were 60% for microencapsulated S. boulardii and 25% for E. faecium in simulated gastric juice. And the increases were 15% and 20% respectively when the survival rates of the microencapsulated S. boulardii and E. faecium were determined in simulated intestinal juice. The microencapsulation by emulsion and internal gelation offers an effective way to protect microbes in adverse in vitro and in vivo conditions and is promising for the large-scale production of probiotics microencapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.