Abstract

The growth and geometric structure of ultrathin zinc oxide films on Pd(111) has been studied by scanning tunneling microscopy, low-energy electron diffraction, and density functional theory calculations. For sub-monolayer coverages, depending on the oxygen pressure, two well-ordered zinc oxide phases with (4 × 4) and (6 × 6) coincidence structures form, which are attributed to H-terminated Zn6O5 and graphite-like Zn6O6 layers, respectively. The (6 × 6) phase exhibits a pronounced oxygen pressure dependence: at low p(O2) a well-ordered (6 × 6) two-dimensional array of O vacancies develops, yielding a layer with a formal Zn25O24 stoichiometry, while at high p(O2) the Zn6O6 monolayer transforms into bilayer islands. For oxide coverages up to 4 monolayers the graphite-like Zn6O6 structure is thermodynamically the most stable phase over a large range of oxygen chemical potentials, before it converges to the bulk-type wurtzite structure. Under oxygen-poor conditions a compressed overlayer of Zn adatoms can be stabilized on top of the Zn6O6 structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.