Abstract

Two approaches have been compared for the low temperature epitaxy of thick, partially relaxed GeSn layers on top of Ge strain relaxed buffers. The benefit of using step-graded instead of constant composition layers when targeting really high Sn contents (16%, here) was conclusively demonstrated. Digermane (Ge2H6) and tin-tetrachloride (SnCl4) were used as Ge and Sn precursors, respectively. The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio being constant, it was through a temperature lowering that the Sn concentration in the graded structure was increased. X-ray diffraction, atomic force microscopy and transmission electron microscopy were used to gain access to the Sn concentration, the strain state, the surface morphology and thicknesses of the heterostructures. Using a step-graded approach allowed us to gradually relax the strain in the GeSn layers. It helped us obtain high crystalline quality and avoid Sn segregation/precipitation for high Sn contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.