Abstract

Tolerance of wheat (Triticum aestivumL.) to high temperature might be improved by introducing alien genes from amphiploids. Our objectives were to determine responses of synthetic hexaploid and octaploid amphiploid wheats to high temperature and evaluate their potential usefulness for developing improved cultivars. Thirty synthetic hexaploids from durum wheat (T. turgidum L.) × Aegilops tauschii Cos. Accessions and four octaploid amphiploids from Chinese Spring wheat × different grasses were grown at 20/15 and 30/25 °C day/night during maturation. Tolerance was ascertained by two measures of senescence, leaf chlorophyll content and grain filling duration, plus grain yield and its components. Leaf chlorophyll was measured after 10 and 15 days of treatment, and grain yield was determined at maturity to calculate the heat susceptibility index(HSI), a gauge of the reduction in yield at high temperature of each line relative to all other lines. Chlorophyll content, grain filling duration, yield, and kernel weight were highly negatively correlated with HIS of the hexaploid amphiploids at30/25 °C, but grain yield was positively correlated with HSI at20/15 °C. The hexaploid lines might be useful for improving wheat for regions where stress from high temperature occurs frequently. Chlorophyll content and grain filling duration also were highly negatively correlated with HSI of the octaploid lines, but they would be less directly useful for improving wheat because the kernel number was reduced greatly due to unbalanced meiotic chromosomal segregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call