Abstract
Of the formation processes in the solar system, the process of growth and sedimentation of dust grains in the primordial solar nebula is investigated for a region near the Earth's orbit. The growth equation for dust grains, which are sinking as well as being in thermal motion, is solved numerically in the wide mass range between 10 −12 and 10 6 g. Any turbulent motions in the nebula are assumed to have already decayed when the sedimentation begins. The numerical simulation shows that the growth and sedimentation proceed faster than was found by Kusaka et al. (1970) but in accordance with the estimate of Safronov (1969) owing to a cooperative interaction of the growth and the sedimentation; that is, at about 3 × 10 3 years after the beginning of the growth and sedimentation a dust layer, composed of centimeter-sized grains, is formed at the equator of the solar nebula. Furthermore, the mass density of dust grains floating in the outer layers of the nebula is found to be of the order of 10 −5 after 10 5 years compared with that before the sedimentation. From these results, it can be estimated that at about 5 × 10 3 years after the beginning of sedimentation the dust layer breaks up owing to the onset of gravitational instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.