Abstract

Two-dimensional particle-in-cell simulations are presented of the linear and nonlinear developments of stimulated Raman scattering in two overlapping laser beams. The development of the most unstable mode in the linear stage is consistent with a previous paper [C. Z. Xiao etal., Phys. Plasmas 26, 062109 (2019)PHPAEN1070-664X10.1063/1.5096850] where SL mode (two beams share a common scattered light) is dominant in the overlapping region. This mode is enhanced with plasma density and correlation of beam polarizations. When lasers are cross-polarized, it backs to the single-beam Raman backscattering with weak intensity. Trapping-induced nonlinear frequency shift leads to the saturation of SL mode by detuning the coupling and broadening the spectrum. An interesting result that SL mode becomes stronger as the incidence angle increases is contrary to the theoretical prediction and it is a consequence of less efficient saturation in the nonlinear stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call