Abstract

Different tree species exhibit different phenological and physiological characteristics, leading to complexity in inter-species comparison of stem radial growth response to climate change. This study explored the climate-growth responses of Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabulaeformis) in the Qilian Mountains, Northwest China. Meanwhile, Vaganov-Shashkin model (VS-oscilloscope) was used to simulate the relationships between radial growth rates and phenology. The results showed that 1) in their radial growth patterns, Qinghai spruce showed a significant increasing trend, while Chinese pine showed a decreasing trend, and Qinghai spruce has a longer growing season than Chinese pine. 2) For the radial growth-climate dynamic response, Qinghai spruce was influenced in an unstable manner by the mean temperature in the mid-growing season of the current year and the late growing season of the previous year and by the mean minimum temperature in the mid-growing season of the current year, while Chinese pine was influenced in a stable manner by the mean temperature and mean maximum temperature during the growing season of the current year. 3) The radial growth rates of the two conifer species were limited by temperature at the initiation and cessation of growth and by soil moisture at the peak of growth. But Chinese pine was more severely affected by soil moisture than Qinghai spruce in the middle of growth. Therefore, different management and restoration measures should be taken based on the differences in ecological responses and physical and physiological properties of the two conifer species to climate change in the subalpine forest ecosystems in the semiarid and arid regions of Northwest China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call