Abstract

To ensure that animal welfare requirements and phenotypic characteristics of the newly produced transgenic lines are not compromised, an evaluation of all individuals is necessary. This can be inferred by the analysis of the growth and reproduction parameters. The present study was designed to determine the impact of the insertion of human granulocyte-colony stimulating factor (hG-CSF) transgene on growth and reproductive characteristics in first-generation (F1) goats from two transgenic lines. Bodyweight (BW) development (BW at birth, mean BW gain before weaning, BW at weaning, mean BW gain after weaning, BW at puberty), as well as reproductive parameters (age at puberty, ejaculate volume, concentration, total sperm per ejaculate, massal motility, progressive individual motility, major and minor defects) were similar (P > 0.05) between transgenic (T) and non-transgenic (NT) goats. Significant (P < 0.05) differences in mean (±s.d.) white blood cell count were observed between T and NT in first day of life (174.6 ± 14.7 × 103 and 15.0 ± 4.0 × 103 cells/µL), and during (66.8 ± 21.1 × 103 and 17.0 ± 4.6 × 103 cells/µL) and after (36.6 ± 4.0 × 103 and 15.5 ± 2.2 × 103 cells/µL) suckling, even though hG-CSF has not been detected in blood serum in any analysis. Although other cell counts were occasionally higher in T animals, differential counts showed that this difference was mainly due to an increased number of neutrophils, which represents 84.6%, 67.2% and 56.8% of total white blood cell count respectively, in the three time periods. Kidney and liver biochemical analyses indicated that all goats were healthy. Thus, it is possible to assume that all animals are normal and had no deleterious effects on either growth or reproductive parameters by the presence of transgene or as a consequence of leukocyte profile alteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.