Abstract
Aligned n-ZnO nanowires were synthesized via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen on p-silicon (Si) substrate. The as-synthesized aligned ZnO nanowires were characterized in terms of their structural and optical properties by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction process (XRD) and room-temperature photoluminescence (PL) properties. The detailed structural and optical studies revealed that the as-grown nanowires are single crystalline with the wurtzite hexagonal phase and exhibit good optical properties. From application point of view, the as-grown aligned n-ZnO nanowires on p-Si substrates were used to fabricate heterojunction diodes. The fabricated heterojunction diodes exhibited good electrical (I-V) properties with the turn-on voltage of approximately 1.0 V. A temperature-dependant (from 25 degrees C approximately 130 degrees C), I-V characteristics for the fabricated device was also demonstrated in this paper. The presented results demonstrate that the simply grown aligned n-ZnO nanowires on p-Si substrate can be efficiently used for the fabrication of efficient heterojunction devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.