Abstract

The objective was to quantify the effect of substrate pH and micronutrient concentration on growth and pigment content for two floricultural crop species, Petunia ×hybrida `Priscilla' and Impatiens wallerana `Rosebud Purple Magic'. A 70% peat: 30% perlite medium was amended with dolomitic hydrated lime to achieve five substrate pH's ranging from pH 4.4 to 7.0. Plants were grown in 10-cm-diameter pots in a greenhouse for 4 weeks, and irrigated with a fertilizer containing (in mg·L-1) 210N-31P-235K-200Ca-49Mg. Micronutrients were applied using an EDTA (ethylenedinitrilotetraacetic acid) chelated micronutrient blend (C111), at 1×, 2×, and 4× concentrations (in mg·L-1) of 0.50Fe-0.25Mn-0.025Zn-0.04Cu-0.075B-0.01Mo. Petunia shoot dry mass and stem caliper decreased as substrate pH increased, whereas leaf length and width remained unchanged. The highest level of C111 resulted in higher dry mass and smaller leaf area compared with other C111 levels. Overall, substrate pH and C111 had little effect on plant size or mass for impatiens. For both species, increasing substrate pH above 5.3 resulted in a decline in chlorophyll, carotenoids, and the SPAD chlorophyll index (measured with a Minolta-502 SPAD meter) compared with the lowest three pH levels. Chlorosis was observed at pH 7 after 2 weeks of growth. Increasing C111 concentration had no effect on pigment content below pH 5.3, but increased pigment content at higher pH levels. The SPAD index was highly correlated with chlorophyll content. This research emphasizes that an acceptable range in substrate pH can vary depending on fertilizer practices, with higher micronutrient concentration compensating for lower solubility at high substrate pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call