Abstract

Diurnal changes in net photosynthesis, dark respiration, specific leaf weight, leaf water potential, stomatal conductance, starch and soluble sugar concentrations, and the activities of malate dehydro- genase and glycollate oxidase were measured in soybeans grown in 23/23,26/20 and 29/17°C thermo- periods, to determine their relationship to thermoperiodic effects on plant growth. Soybean height and main stem leaf number were significantly higher under the constant daylnight (23/23°C) temperature regime. Leaf, stem and root dry weights, and specific leaf weight were all highest where the day/night temperature differential was greatest (29/17°C). Differences in net photosynthesis, dark respiration, starch and soluble sugar concentration, and malate dehydrogenase activity were small between the thermoperiod treatments. However, glycollate oxidase activity was higher under the constant-temperature conditions. Starch concentration, specific leaf weight, and glycollate oxidase activity all increased throughout the photoperiod and subsequently decreased through the dark period. Net photosynthesis declined throughout the photoperiod and both dark respiration and malate dehydrogenase activity peaked at the beginning of the dark period. Each of these diurnal responses was similar under each thermoperiod. Leaf water potential and stomatal conductance did not differ between thermoperiods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call