Abstract

Monochromatic red light (R) supplementation is more efficient than blue light (B) in promoting Norway spruce (Picea abies (L.) H. Karst) growth. Transcriptome analysis has revealed that R and B may regulate stem growth by regulating phytohormones and secondary metabolites; however, the effects of light qualities on physiological responses and related gene expression in Norway spruce require further study. In the present study, three-year-old Norway spruce seedlings received sunlight during the daytime were exposed to monochromatic B (460 mm), monochromatic R (660 nm), monochromatic far-red light (FR, 730 nm), and a combination of three monochromatic lights (control, R:FR:B = 7:1:1) using light-emitting diode (LED) lamps for 12 h after sunset for 90 day. Growth traits, physiological responses, and related gene expression were determined. The results showed that light quality significantly affected Norway spruce growth. The stem height, root collar diameter, and current-year shoot length of seedlings treated with R were 2%, 10% and 12% higher, respectively, than those of the control, whereas seedlings treated with B and FR showed significantly lower values of these parameters compared with that of the control. The net photosynthetic rate (Pn) of seedlings under R treatment was 10% higher than that of the control, whereas the Pn values of seedlings treated with FR and B were 22% and 33%, respectively, lower than that of the control. The ratio of phosphoenolpyruvate carboxylase to ribulose-1,5-bisphosphate carboxylase/oxygenase (PEPC/Rubisco) of seedlings after the R treatment (0.581) was the highest and 3.98 times higher than that of the seedlings treated with B. Light quality significantly affected the gibberellic acid (GAs) levels, which was 13% higher in seedlings treated with R (6.4 g/100 ng) than that of the control, whereas, the GAs level of seedlings treated with B and FR was 17% and 19% lower, respectively, than that of the control. In addition, seedlings treated with R achieved the lowest ratio of leaf chlorophyll content to fresh weight (8.7). Compared to the R and control treatments, seedlings received FR treatment had consistently lower values of the quantum yield of electron transport beyond QA− (primary quinone, ϕEo) and efficiency, with which a trapped exciton moves an electron into the electron transport chain beyond QA− (ψo), while higher values of the relatively variable fluorescence at the J step and normalized relatively variable fluorescence at the K step (Wk). The values of ϕEo, ψO, VJ and Wk in seedlings treated with B were similar to those in the control group. The expression of genes associated with light signal transduction, such as PHYTOCHROME C (PHYC), ELONGATED HYPOCOTYL5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC 1-2 (COP1-2), and PHYTOCHROMEINTERACTING FACTOR 3 (PIF3), was significantly higher in seedlings under B treatment than those under other light treatments. Nevertheless, significant differences were not observed in the expression of COP1-2, HY5, and PIF3 between the R treatment and the control. The expression value of COP1-2 was significantly lower in R than FR light treatments. In conclusion, compared with the control, R promotes, whereas B and FR inhibit Norway spruce growth, which was accompanied by physiological changes and genes expression regulation that may be relate to a changing phytochrome photostationary state (PSS) with the supplemental R in seedlings.

Highlights

  • Light provides energy for plant photosynthesis, and regulates plant growth and development as a signal

  • Significant differences were observed in stem height, root collar diameter, current-year shoot length, leaf area, leaf dry weight, and SLA of Norway spruce seedlings exposed to four light spectra treatments (p < 0.05, Table 2)

  • Our results demonstrate that light quality significantly affect Norway spruce growth

Read more

Summary

Introduction

Light provides energy for plant photosynthesis, and regulates plant growth and development as a signal. The relative distribution of the light spectrum changes with variations in latitude and weather and on a daily and seasonal basis [1]. This variation is sensed through the activation of various receptors used to regulate growth and adaptation to changes in light environment [2]. Phytochromes exist in two forms: the red light (R) absorbing form (Pr), which absorbs maximally at 660 nm and is generally considered to be biologically inactive; and the far-red light (FR) absorbing form (Pfr), which absorbs maximally at 730 nm and is biologically active [4]. Absorption of light by either Pr or Pfr results in phototransformation between these two forms, which drives the on/off switching of the successive signaling pathway [5]. That is a low R/FR results in a low PSS [7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call