Abstract

The objective of this study was to evaluate growth and physiological responses of ‘Cherokee’ and ‘Waldmann’s Green’ lettuce (Lactuca sativa) exposed to small changes in light quality and intensity within a 24-h period. Three pre-dawn (PD; 0600 to 0700) and three end-of-day (EOD; 2100 to 2200) treatments were evaluated in the study, each providing 50 ± 2 µmol·m−2·s−1 of either blue, red, or broadband white light from light-emitting diodes (LEDs). To account for the main daily light integral (DLI), broadband white LEDs provided 210 ± 2 µmol·m−2·s−1 from 0700 to 2200 or from 0600 to 2100 for the PD or EOD treatments, respectively. A control treatment was included which provided 200 ± 2 µmol·m−2·s−1 of white light from 0600 to 2200. All treatments provided a DLI of 11.5 mol·m−2·day−1 over a 16-h photoperiod. Regardless of cultivar, no treatment difference was measured for hypocotyl length or leaf number. However, plants grown under EOD-blue or PD-white had up to 26% larger leaves than those grown under PD-red and 20% larger leaves than control. In addition, plants grown under EOD-blue produced up to 18% more shoot fresh mass compared to those grown under control, EOD-red, or PD-red. Contrasts for gas-exchange data collected during the main photoperiod showed that light quality was not significant within PD or EOD for any of the parameters evaluated. However, regardless of light quality, stomatal conductance (gs) and transpiration (E) were up to 34% and 42% higher, respectively, for EOD-grown plants compared to control. Our results suggest that 1 h of low intensity EOD-blue light has the potential to promote lettuce growth by increasing leaf area and shoot fresh mass when the main DLI from sole-source lighting is provided by broadband white LEDs.

Highlights

  • Traditional horticultural lamps are useful at providing adequate daily light integral (DLI) indoors

  • EOD-blue produced up to 18% more shoot fresh mass compared to those grown under control, EOD-red, or PD-red

  • Our results suggest that 1 h of low intensity EOD-blue light has the potential to promote lettuce growth by increasing leaf area and shoot fresh mass when the main DLI from sole-source lighting is provided by broadband white light-emitting diodes (LEDs) (Table 1)

Read more

Summary

Introduction

Traditional horticultural lamps (e.g., high-pressure sodium, cool-white fluorescent, metal halide) are useful at providing adequate daily light integral (DLI) indoors. Light-emitting diodes (LEDs) offer unique opportunities for exploring light-quality effects on plant growth, development, and metabolism. A useful feature of LEDs is their inherent capability to provide accurate spectral control in growing environments by producing narrow-spectrum light. This allows plant photoreceptors to perceive light cues that can control morphology and improve product quality. Numerous plant species have been evaluated under LED lighting with favorable results in production and flowering control [1]. To date, most sole-source light-quality research focused on plant growth-responses to Horticulturae 2018, 4, 8; doi:10.3390/horticulturae4020008 www.mdpi.com/journal/horticulturae

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call