Abstract

Drought stress is one of the most important abiotic stresses limiting plant growth, while high recuperative capacity of plants from drought damages is critical for plant survival in periods of drought stress and rewatering. The objective of our study was to determine physiological and growth factors in association with drought tolerance and recuperative capacity of cool-season kentucky bluegrass (Poa pratensis cv. Excursion II) and warm-season zoysigrass (Zoysia matrella cv. Diomand), which were grown in controlled environment chambers and maintained well watered (control) or subjected to drought stress and subsequently rewatering. Compared with kentucky bluegrass, zoysiagrass maintained higher leaf hydration level during drought stress, as shown by greater relative water content (RWC), improved osmotic adjustment (OA), increased leaf thickness, and more extensive root system at deeper soil layers. Turf quality (TQ) and photosynthesis recovered to a greater level and sooner in response to rewatering for zoysiagrass, compared with kentucky bluegrass, which could be due to more rapid reopening of stomata [higher stomatal conductance (gS)] and leaf rehydration (higher RWC). The aforementioned physiological factors associated with leaf dehydration tolerance during drought and rapid resumption in turf growth and photosynthesis in zoysiagrass could be useful traits for improving drought tolerance in turfgrasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.