Abstract

A study was conducted to estimate the effect of UV-C (200–280 nm) radiation stress on growth and physiochemical responses of Camelinasativa L. cv. Calina (EC643910; a potential bio-fuel crop) for its possible mass multiplication at high-altitude under high radiations. The germination percentage in terms of radicle protrusion and opening of cotyledonary leaves significantly decreased 13.98 and 27.8 %, respectively, as compared to control. However, no significant change was observed in growth parameters including root and shoot lengths and fresh biomass. The relative membrane leakage rate and lipid peroxidation as a malondialdehyde contents significantly increased with the value of ~99 % and 0.17 mM g−1 FW, respectively, under UV-C stress. Also, the proline, glycine betaine and total soluble sugars contents increased by ~330, ~440, ~144 %, respectively, as compared to control. Among non-enzymatic antioxidants, the ascorbic acid and total phenol contents significantly increased by ~284 and ~537 %, respectively, as compared to control. Likewise, the activity of antioxidant enzyme, ascorbate peroxidase, guaiacol peroxidase and catalase increased under UV-C stress with the value of 1.03, 0.05 and 0.06 µmol mg protein−1 min−1, respectively. In addition, the chlorophyll a, b and total (a + b) contents decreased by ~180, ~151 and ~147 %, respectively, as compared to control. In contrast, the total carotenoids and anthocyanin contents increased by ~160 and ~184 %, respectively. Our findings suggest the adaptive growth and physiochemical responses of C.sativa under UV-C stress. Therefore, it may be recommended for large-scale cultivation at high-altitude under intense natural radiations for future bio-fuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.