Abstract

Bud development influences shoot branching and the plasticity and adaptability of plants. To explore the differences of post-embryonic development of different types of buds, shoots originated from adventitious buds and axillary buds of cuttings in two populations of balsam poplar (Populus balsamifera L.) were investigated for differences in leaf morphology, photosynthetic and growth characteristics, and the effects of a carbonic anhydrase (CA) inhibitor on CA activity, photosynthesis and mesophyll conductance (gm ). The results showed that axillary buds produced ovate first few leaves and longer shoots while adventitious buds produced lanceolate first few leaves with higher specific leaf area (SLA). There were no significant differences in leaf area-based photosynthetic rate (An ), maximum carboxylation rate (Vcmax ), and maximum electron transport rate (Jmax ) between shoots originated from the two bud types. Based on the principal component analysis, shoots of adventitious bud origin grouped on daytime respiration and SLA, while cuttings from axillary buds clustered toward the opposite direction of quantum yield and light saturation point. Shoots originated from different types of buds had different growth rates and biomass, but the direction of the differences varied with the population of the mother tree. The two populations differed in An , gm , and relationships between CA, An , and gm . There were differences in post-embryonic growth traits of shoots from axillary buds and those from adventitious buds, which may be an adaptive strategy for regeneration under different light conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call