Abstract

Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg-1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (PN), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on PN was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.