Abstract

We developed a one-step catalyst-free chemical vapor deposition process to synthesize Si-SiOx nanowires using tetraethoxysilane as the precursor. Observations using scanning electron microscopy showed that the Si-SiOx nanowires were 20–50nm in diameter and tens of microns in length. The high-resolution transmission electron microscope analysis and X-ray diffraction demonstrated that the nanowires consisted of crystal silicon and amorphous SiOx. The Si and O with an atomic ratio of the Si-SiOx NWs were 1:1.2 according to the energy dispersion X-ray spectroscope. A systematic study on the effect of the growth conditions, such as reaction temperature, the reaction time, and the TEOS vapor flow rate was performed. The formation of Si-SiOx nanowires was implemented by the non-classical crystallization mechanism. The charged nanoparticles acting as building blocks self-assembled into nanowires. The photoluminescence measurements were carried out and showed that the Si-SiOx nanowires emitted stable ultraviolet and green luminescence excited by ultraviolet light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call