Abstract

The melting behavior of Ruddlesden-Popper type hybrid improper ferroelectric Sr3Zr2O7 phase in the ZrO2–SrO pseudo-binary system was investigated, and its single crystals were successfully grown. A series of the slow-cooling floating zone experiments revealed that Sr3Zr2O7 melts incongruently into SrZrO3 phase and a liquid and that the compositional range where Sr3Zr2O7 and a liquid coexist is located around 70 mol% SrO composition. Based on the results, we attempted to grow Sr3Zr2O7 single crystals by the traveling solvent floating zone method using SrO-excess solvent and feed. Consequently, many small single crystals of Sr3Zr2O7 phase with several millimeters in size were discovered in the as-grown boules covered with SrO phase. The phase transition behavior of the grown crystals was investigated by differential thermal analysis with polarizing optical microscopy as well as by optical second harmonic generation measurements. We directly observed a reconstruction of orthorhombic twin domains in Sr3Zr2O7 single crystals accompanied by the first-order ferroelectric transition at about 410 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call