Abstract

Zinc and zinc oxide films on Cu(111) have frequently been used as inverse model catalysts to study various chemical reactions. In the present work the growth and subsequent oxidation of zinc films are investigated by scanning tunneling microscopy (STM), low-energy ion scattering (LEIS), temperature-programmed desorption (TPD), and low-energy electron diffraction (LEED). Up to monolayer coverage zinc grows as a two-dimensional film with zinc atoms continuing the face-centered cubic lattice of the copper substrate. At higher coverages layer-by-layer growth is less strictly obeyed. Stacking faults are introduced as well, indicating a transition toward a hexagonal-close-packed structure of zinc. At 300 K intermixing is found to be slow but rises when the temperature is increased. Accordingly, the continuous downshift and broadening of the zinc desorption peak with increasing submonolayer coverage are attributed to different levels of intermixing formed during the TPD temperature ramp. Postoxidation of zinc fi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.