Abstract

The kinetics and morphology of isothermal transformation in the vicinity of the time-temperaturetransformation (TTT) diagram bay have been investigated with optical and transmission electron microscopy (TEM) in 19 Fe-C-Mo alloys at three levels of carbon concentration (approximately 0.15, 0.20, and 0.25 wt pct) and at Mo concentrations from 2.3 to 4.3 wt pct, essentially always at temperatures above or at that of the bay,Tb. Quantitative metallography yielded no evidence for incomplete transformation (stasis) in any of these alloys atT > Tb. Measurements of the thickening kinetics of grain boundary ferrite allotriomorphs (invariably containing either interphase boundary or fibrous Mo2C) demonstrated four different patterns of behavior. The customary parabolic time law for allotriomorph thickening in Fe-C and in many Fe-C-X systems was obtained only at higher temperatures and in the more dilute Fe-C-Mo alloys studied. With decreasing temperature and increasing solute concentrations, a two-stage and then two successive variants of a three-stage thickening process are found. In the most concentrated alloys and at temperatures nearest the bay, the second stage of the three-stage thickening process corresponds to “growth stasis”—the cessation of allotriomorph thickening. Sufficient prolongation of growth stasis presumably leads to “transformation stasis.” A number of models for growth of the carbide-containing allotriomorphs were investigated during attempts to explain the observed kinetics. It was concluded that their growth is controlled by carbon diffusion in austenite but with a driving force drastically reduced by a very strong solute drag-like effect (SDLE) induced by Mo segregation at disordered-type austenite: ferrite boundaries. Carbide growth in the fibrous structure appears to be fed by diffusion of Mo along austenite: ferrite boundaries, whereas carbides in the interphase boundary structure grow primarily by volume diffusion of Mo through austenite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call