Abstract

High quality SrBi2Nb2O9 ferroelectric thin films were fabricated on platinized silicon using pulsed laser deposition assisted with dc glow discharge plasma. Microstructure and ferroelectric properties of the films were characterized. Optical properties of the thin films were studied by spectroscopic ellipsometry and photoluminescence from the ultraviolet to the infrared region. Optical constants, n∼0.56 in the infrared region and n∼2.24 in the visible spectral region, were determined through multilayer analyses on their respective pseudodielectric functions. The band-gap energy is estimated to be 3.60 eV. A photoluminescence peak at 0.78 μm, whose intensity decreases with decreasing temperature, was observed when excited with subband-gap energy (2.41 eV). This emission process may involve intermediate defect states at the crystallite boundaries. A possible mechanism for the observed photoluminescence, a Nb4+–O− exciton in the NbO6 octahedron, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.