Abstract

Atomic-layer transition metal dichalcogenides (TMDCs) have attracted appreciable interest due to their tunable band gap, spin-valley physics, and potential device applications. However, the quality of TMDC samples available still poses serious problems, such as inhomogeneous lattice strain, charge doping, and structural defects. Here, we report on the growth of high-quality, monolayer WS2 onto exfoliated graphite by high-temperature chemical vapor deposition (CVD). Monolayer-grown WS2 single crystals present a uniform, single excitonic photoluminescence peak with a Lorentzian profile and a very small full-width at half-maximum of 21 meV at room temperature and 8 meV at 79 K. Furthermore, in these samples, no additional peaks are observed for charged and/or bound excitons, even at low temperature. These optical responses are completely different from the results of previously reported TMDCs obtained by mechanical exfoliation and CVD. Our findings indicate that the combination of high-temperature CVD with a cleaved graphite surface is an ideal condition for the growth of high-quality TMDCs, and such samples will be essential for revealing intrinsic physical properties and for future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.