Abstract

BackgroundLow birthweight (LBW) infants are at higher risk of mortality and morbidity (growth, chronic disease and neurological problems) during their life. Due to the high incidence of (pre-) eclampsia in Haiti, LBW infants are common. We assessed the anthropometric growth (weight and length) and neurodevelopmental delay in LBW and normal birthweight (NBW) infants born at an obstetric emergency hospital in Port au Prince, Haiti, between 2014 and 2017.MethodsInfants were followed at discharge and 3, 6, 12, 15, 18, 21 and 24 months of corrected gestational age. At each visit they underwent a physical checkup (weight, length, physical abnormalities, identification of morbidities). At 6, 12, 18 and 24 months they underwent a neurodevelopmental assessment using the Bayley Scale III (motor, cognitive and communication skills). We modelled the trajectories between birth and 24 months of age of NBW compared to LBW infants for weight, length, and raw scores for Bayley III assessments using mixed linear models.ResultsIn total 500 LBW and 210 NBW infants were recruited of which 333 (46.7%) were followed up for 24 months (127 NBW; 60.5% and 206 LBW; 41.2%) and 150 died (LBW = 137 and NBW = 13). LBW and NBW babies gained a mean 15.8 g and 11.4 g per kg of weight from discharge per day respectively. The speed of weight gain decreased rapidly after 3 months in both groups. Both groups grow rapidly up to 6 months of age. LBW grew more than the NBW group during this period (22.8 cm vs. 21.1 cm). Both groups had WHZ scores <− 2 up to 15 months. At 24 months NBW babies scored significantly higher on the Bayley scales for gross motor, cognitive and receptive and expressive communication skills. There was no difference between the groups for fine motor skills.ConclusionLBW babies that survive neonatal care in urban Haiti and live up to 24 months of age, perform similar to their NBW for weight, length and fine motor skills. LBW babies are delayed in gross motor, cognitive and communication skills development. Further research on the clinical significance of these findings and long term implications of this neurodevelopmental delay is needed.

Highlights

  • Low birthweight (LBW) infants are at higher risk of mortality and morbidity during their life

  • LBW babies are delayed in gross motor, cognitive and communication skills development

  • The latter can result in the babies being small for gestational age (SGA), which is most commonly defined as a baby with a weight below the 10th percentile for the gestational age [4]

Read more

Summary

Introduction

Low birthweight (LBW) infants are at higher risk of mortality and morbidity (growth, chronic disease and neurological problems) during their life. LBW classification is determined at birth and based on the absolute weight of the baby at birth regardless of gestational age It is multifactorial in nature and can be caused by preterm delivery or restricted foetal (intra-uterine) growth [2, 3]. The survival rates of LBW infants have improved with improved clinical management This group of infants remains at risk of higher mortality and morbidity during the neonatal period (i.e. within 28 days after birth) and thereafter. Several studies carried out in high resource settings have identified that surviving preterm and/or LBW infants (compared to NBW infants) followed up after birth (up to a maximum of 11 years) suffered from cerebral palsy, visual disability (blindness), deafness, problems with walking and poor performance on neurodevelopmental assessments [6, 8,9,10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call