Abstract

AbstractLarval growth, age, growth effect and instantaneous mortality were estimated in anchoveta, Engraulis ringens, collected biweekly during the austral winter of 2014 in nearshore waters off Bay of Antofagasta (23°41′W–70°30′S), northern Chile. Through measuring standard length (SL) and sagitta microstructure analysis, it was estimated that the growth rate of E. ringens larvae decreased from June (0.85 mm day−1) to August (0.50 mm day−1). However, the water temperature was homogeneous during the sampling dates (14.6, 15.2, 14.4, and 14.6°C), suggesting that the decelerating larval growth was not linked to changes in sea temperature. Additionally, larvae with slow growth have larger otoliths compared with conspecifics with fast growth (growth effect). Larval mortality rates tended to decrease until the middle of July (0.18 per day) but increased to 0.25 per day in early August, which coincided with lower food availability (i.e., chlorophyll‐a, 2.7–5.6 mg m−3) and a high occurrence of smaller larvae (1.58–11.5 mm). Partial least squares analysis indicates low covariance between the biological and oceanographic variables (PLS: 11.71%), suggesting that other factors, such as parental effects, may explain the abrupt decrease in the larval growth rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call