Abstract

Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR=aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b≈1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from -1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual ("static") b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species ("evolutionary") b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b≈1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call