Abstract

In this work, we investigated the controlled growth of nanocrystalline CdE (E = S, Se, and Te) via the pyrolysis of CdO and Cd(O2CCH3)2 precursors, at the specific Cd to E mole ratio of 0.67 to 1. The experimental results reveal that while the growth of CdS produces only a spherical morphology, CdSe and CdTe exhibit rod-like and tetrapod-like morphologies of temporally controllable aspect ratios. Over a 7200 s time period, CdS spheres grew from 4 nm (15 s aliquot) to 5 nm, CdSe nanorods grew from dimensions of 10.8 × 3.6 nm (15 s aliquot) to 25.7 × 11.2 nm, and CdTe tetrapods with arms 15 × 3.5 nm (15 s aliquot) grew into a polydisperse mixture of spheres, rods, and tetrapods on the order of 20 to 80 nm. Interestingly, long tracks of self-assembled CdSe nanorods (3.5 × 24 nm) of over one micron in length were observed. The temporal growth for each nanocrystalline material was monitored by UV-VIS spectroscopy, transmission electron spectroscopy, and further characterized by powder X-ray diffraction. This study has elucidated the vastly different morphologies available for CdS, CdSe, and CdTe during the first 7200 s after injection of the desired chalcogenide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.