Abstract
Textured (100) diamond films have been successfully grown using the plasma-enhanced chemical vapor deposition technique and characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The thickness of such a (100)-oriented diamond film can be as thin as 4 μm, and the just-emerged transitional layer is found to be only 1.5 μm, which is very thin compared with the computer simulation value of 700 d 0, where d 0 is the average distance between the nuclei. A systematic study of various parameters in the carburization and bias steps on the growth of textured (100) diamond films and the subsequent change of surface morphology has been investigated. Experimental results show that these two pre-growth steps seem to ease the growth of textured (100) diamond films and they should be optimized for a set of growth conditions. It is suggested that varying these parameters in the pre-growth steps may cause a change of microstructure, alignment of nuclei, and defect states in the diamond-like layer, resulting in the morphological change of textured (100) diamond films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.