Abstract

Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mossbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.