Abstract

In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0-30 g L(-1)), it was observed that 2.5 g L(-1) was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.