Abstract

Landscape irrigation is the second largest user of reclaimed water in industrialized countries; however, its high concentration of soluble salts, especially Na+ and Cl–, may induce growth reduction and leaf necrosis or bronzing in ornamental species. The present study was conducted to determine the growth and quality responses and nutritional ion imbalances of selected landscape species during the container production phase when subjected to irrigation with water of increasing NaCl + CaCl2 concentrations. Plants of boxwood [Buxus microphylla var. japonica (Mull. Arg. ex Miq) Rehder & E.H. Wilson], escallonia (Escallonia ×exoniensis hort. Veich ex Bean), hawthorn [Raphiolepis indica (L.) Lind. Ex Ker Gawl. × ‘Montic’], hibiscus (Hibiscus rosa-sinensis L.), and juniper (Juniperus chinensis L.) were grown in a greenhouse in the Spring–Summer and in the Fall–Winter in separate experiments. Saline irrigation consisted of solutions with electrical conductivities (ECiw) of 0.6, 2, 4, 6, and 8 dS·m−1 in the Spring–Summer experiment and 0.6, 4, 6, 8, and 12 dS·m−1 in the Fall–Winter. Growth of the five species decreased when irrigated with saline waters. Leaf growth was highly sensitive to salinity and the average decrease in leaf dry weight was the criterion used to rank the tolerance of the species. In the Spring–Summer experiment, the ranking was (higher tolerance to lower tolerance): juniper ∼ boxwood > escallonia > hawthorn > hibiscus, whereas in Fall–Winter, the ranking was: juniper ∼ boxwood > hibiscus > escallonia > hawthorn. The species were ranked according to their visual attractiveness in the Spring–Summer experiment. The threshold ECiw at which visual attractiveness was affected gave the following ranking (higher to lower tolerance): hibiscus > juniper > escallonia > hawthorn > boxwood. Estimating the EC of drainage water from threshold ECiw, boxwood was classified as sensitive, hawthorn as moderately sensitive, escallonia as moderately tolerant, and hibiscus and juniper as highly tolerant. Tolerance of juniper was ascribed to Na+ and Cl– retention in the roots observed in both growing seasons and to the higher root biomass that allowed a higher accumulation of salts in this organ, preventing translocation to the leaves. Although boxwood exhibited acceptable tolerance in terms of growth, visual quality severely decreased; in contrast, growth of hibiscus was the most severely reduced but was rated as the most tolerant species in terms of visual quality. This opposite response may be the result of an excellent capacity to compartmentalize salts in hibiscus, whereas in boxwood, this mechanism may be absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call