Abstract

In this study the effects of temperature, oxygen tension, water activity (aW), pH, incubation time and their interactions on (1) the lag phase prior to growth, (2) growth rate and (3) gliotoxin production of two feed-borneAspergillus fumigatus sensu stricto strains, isolated from fermented maize silage and brewer's grains, were evaluated on an agar medium based on these substrates. Regardless of oxygen tension, the growth rate of the two strains decreased significantly as temperature and aW decreased (P<0.05). The optimum conditions forA. fumigatus growth were 37 °C, 0.98 aW for both strains at reduced oxygen tension, regardless of pH level (P<0.05). The studiedA. fumigatus strains were able to grow under several incubation conditions, some of them prevalent in stored animal feeds. Some specific interactions that allowed accumulation of gliotoxin at high levels were found. This study showed that gliotoxin production occurred at more restricted conditions than fungal growth. This fact is important, as by maintaining the appropriate conditions in animal feeds,A. fumigatus growth and gliotoxin production can be prevented. In this study, growth rates, lag phases prior to growth and gliotoxin production over a range of environmental conditions provide useful information that can help in predicting the possible fungal contamination of fermented animal feeds. Furthermore, the information is relevant sinceA. fumigatus is an opportunistic pathogen found in cereals and fermented animal feeds and represents a high risk of contamination to animals and farm workers who handle them improperly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.