Abstract

The properties of primary rabbit kidney proximal tubule cells in glucose-free serum-free medium have been examined. Primary rabbit kidney proximal tubule cells were observed to grow at the same rate, 1.0 doublings/day, both in glucose-free and in glucose-supplemented medium. Growth in glucose-free medium was dependent upon the presence of an additional nutritional supplement, such as glutamine, pyruvate, palmitate, lactate, or beta hydroxybutyrate. Lactate, pyruvate, and glutamate are utilized for renal gluconeogenesis in vivo. The growth of the primary rabbit kidney proximal tubule cells in glucose-free medium was also dependent upon the presence of the three growth supplements insulin, transferrin, and hydrocortisone. Insulin was growth stimulatory to the primary proximal tubule cells in glucose-free medium, although insulin causes a reduction in the phosphoenolpyruvate carboxykinase (PEPCK) activity in these cells. PEPCK is a key regulatory enzyme in the gluconeogenic pathway. In order to evaluate whether or not the primary cells have gluconeogenic capacity, their glucose content was determined. The cells contained 5 pmoles D-glucose/mg protein. However, no significant glucose was detected in the medium. Presumably, the primary cells were either utilizing or storing the glucose made by the gluconeogenic pathway. Consistent with this latter possibility, cellular glycogen levels were observed to increase with time in culture. The effect of glucose on the expression of the alpha I(IV) collagen and laminin B1 chain genes was examined. Northern analysis indicated that the level of alpha I(IV) collagen mRNA was significantly elevated in glucose containing, as compared with glucose deficient, medium. In contrast, laminin B1 chain mRNA levels were not significantly affected by the glucose content of the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call