Abstract
Growth and erosion of amorphous hydrogenated carbon (a-C:H) films from nitrogen-containing gas mixtures was studied in an electron-cyclotron-resonance low-temperature plasma. Deposition and erosion rates were measured as a function of nitrogen admixture and ion energy. At low energy, N2 addition to methane plasmas causes a reduction of the deposition rates that does not exceed significantly the expected reduction due to dilution. At higher ion energies the deposition rate reduces further and finally switches to net erosion. Erosion of a-C:H films in N2/H2 mixtures is much more efficient than in pure H2 and N2. The erosion rate drops with increasing N2 admixture almost proportional to the total ion flux if the substrate is at floating potential. For higher ion energies the erosion rate dramatically increases and shows a clear maximum at around 25% N2 flow ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.