Abstract

Temporal and spatial development of short gravity waves in a linear wind-wave tank has been measured for wind speeds up to 15 m/s using microwave Doppler spectrometry. Surface waves of wavelength 4·1 cm, 9·8 cm, 16·5 cm and 36 cm were observed as a function of fetch, wind speed and wind duration. The waves grew exponentially from inception until they were about 10 dB smaller than their maximum height, and the temporal growth and spectral transport (spatial growth) rates were about equal when the wave amplitude was sufficiently small. The amplitude of a short gravity wave of fixed wavelength was found to decrease substantially at winds, fetches or durations greater than those at which the short gravity wave was approximately the dominant wave; such phenomena are sometimes referred to as overshoot. The dominant short gravity wave was observed to reach a maximum amplitude which depended only on wavelength, showing that wave breaking induced by an augmented wind drift cannot be the primary limitation to the wave height. Waves travelling against the wind were observed for wavelengths of 9·8 cm, 16·5 cm and 36 cm and were shown to be generated by the air flow at low wind speeds.Measured initial growth rates for 16·5 cm and 36 cm waves were greater than expected, suggesting the existence of a growth mechanism in addition to direct transfer from the wind via linear instability of the boundary-layer flow. Initial temporal growth rates and spectral transport rates were compared to yield an experimental determination of the magnitude of the sum of nonlinear interactions and dissipation in short gravity waves. If the steady-state energy input in the neighbourhood of the dominant wave occurs at the measured initial temporal growth rates, then most of the energy input is locally dissipated; relatively little is advected away. Calculated gravitycapillary nonlinear energy transfer rates match those determined from initial growth rates for 9·8 cm waves and the gravity–capillary wave interaction continues to be significant for waves as long as 16·5 cm. For longer waves the gravity–capillary interaction is too small to bring the short gravity wave to a steady state when it is the dominant wave of the wind-wave system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.