Abstract

Epitaxial TiN films were grown on cubic (3C)-SiC(001) and hexagonal (6H)-SiC(0001) substrates by ultrahigh vacuum reactive magnetron sputtering from a Ti target in a mixed Ar and N2 discharge at a substrate temperature of 700 °C. Cross-sectional transmission electron microscopy, including high-resolution imaging, showed orientational relationships TiN(001)‖3C-SiC(001), and TiN[110]‖3C-SiC[110], and TiN(111)‖6H-SiC(0001) and . In the latter case, twin-related TiN domains formed as the result of nucleation on SiC terraces with an inequivalent stacking sequence of Si and C. The TiN/SiC interface was locally atomically sharp for both SiC polytypes. Defects in the TiN layers consisted of threading double positioning domain boundaries in TiN(111) on 6H-SiC. Stacking faults in 3C-SiC did not propagate upon growth of TiN. Room-temperature resistivity of TiN films was ρ = 14 μΩ cm for 6H-SiC(0001) and ρ = 17 μΩ cm for 3C-SiC(001) substrates. Specific contact resistance of TiN to 6H-SiC(0001) was 1.3 3 10−3 Ω cm2 for a 6H-SiC substrate with an n-type doping of 5 × 1017 cm−3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call