Abstract

Systematic features of endotaxial growth of intermediate germanium layers at the bonding interface in the silicon-on-insulator structure consisting of buried SiO2 layer implanted with Ge+ ions are studied in relation to the annealing temperature. On the basis of the results for high-resolution electron microscopy and thermodynamic analysis of the Si/Ge/SiO2 system it is assumed that the endotaxial growth of the Ge layer occurs via formation of a melt due to enhanced segregation and accumulation of Ge at the Si/SiO2 interface. Effect of germanium at the bonding interface on the Hall mobility of holes in silicon layers with nanometer-scale thickness is studied. It is found that the structures including the top silicon layer with the thickness 3–20 nm and incorporating germanium feature the hole mobility that exceeds by a factor of 2–3 the hole mobility in corresponding Ge-free silicon-on-insulator structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call