Abstract

Two controlled-environment studies examined growth and ecophysiological responses of black spruce (Piceamariana (Mill.) B.S.P.) seedlings to elevated CO2 under varied water and nutrient additions. Growth analyses were conducted followed by measurements of gas exchange, xylem pressure potential and foliar N concentrations. Growth under elevated CO2 (700 ppm) increased final seedling dry weights by 20–48% compared with seedling growth under ambient CO2 (350 ppm). Percent increases in seedling dry weight were greater under drought versus well-watered conditions and higher versus lower nutrient additions. Seedlings grown under elevated CO2 displayed higher water use efficiency than seedlings grown under ambient CO2. This was apparent based upon instantaneous gas exchange as well as xylem potential pressure measurements. Elevated CO2-induced stimulation of relative growth rate was greatest shortly after seedling emergence and decreased with increased seedling size. Acclimation of net photosynthesis was observed and was reversible. Analyses using allometric principles indicate net photosynthetic acclimation resulted from: (i) growth-induced nutrient dilution; (ii) a decrease in foliar N levels not owing to dilution; and (iii) a decrease in net photosynthetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.