Abstract
The role of bone morphogenetic proteins in the progression and metastasis of prostate cancer is a topic that has undergone extensive research. This study investigates the role of BMP member growth and differentiation factor 9 (GDF-9) in the progression of this disease. GDF-9 was over-expressed and knocked-down in PC-3 cells, respectively. Furthermore, along with the use of a generated recombinant GDF-9 protein, these cells were then analyzed for any changes in their invasiveness and expression of epithelial-mesenchymal transition (EMT) associated genes. GDF-9 was shown to promote the invasiveness of PC-3 cells together with an induction in the expression of genes including SNAI1, RhoC, ROCK-1, and N-cadherin, while reducing levels of E-cadherin. These expression changes are characteristic of the onset of EMT, and resulted in the cells having a more mesenchymal-like morphology. Treating these cells with activin-like kinase-5 (ALK-5) inhibitor, demonstrated that GDF-9 induced up-regulation of these molecules was ALK-5 dependant. This study shows that in PC-3 cells, GDF-9 signaling via ALK-5, can promote cell invasiveness via a complex network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.