Abstract

Growth and competitive infection behaviors of two sets of Bradyrhizobium spp. strains were examined at different temperatures to explain strain-specific soybean nodulation under local climate conditions. Each set consisted of three strains—B. japonicum Hh 16-9 (Bj11-1), B. japonicum Hh 16-25 (Bj11-2), and B. elkanii Hk 16-7 (BeL7); and B. japonicum Kh 16-43 (Bj10J-2), B. japonicum Kh 16-64 (Bj10J-4), and B. elkanii Kh 16-7 (BeL7)—which were isolated from the soybean nodules cultivated in Fukagawa and Miyazaki soils, respectively. The growth of each strain was evaluated in Yeast Mannitol (YM) liquid medium at 15, 20, 25, 30, and 35 °C with shaking at 125 rpm for one week while measuring their OD660 daily. In the competitive infection experiment, each set of the strains was inoculated in sterilized vermiculite followed by sowing surface-sterilized soybean seeds, and they were cultivated at 20/18 °C and 30/28 °C in a 16/8 h (day/night) cycle in a phytotron for three weeks, then nodule compositions were determined based on the partial 16S-23R rRNA internal transcribes spacer (ITS) gene sequence of DNA extracted from the nodules. The optimum growth temperatures were at 15–20 °C for all B. japonicum strains, while they were at 25–35 °C for all B. elkanii strains. In the competitive experiment with the Fukagawa strains, Bj11-1 and BeL7 dominated in the nodules at the low and high temperatures, respectively. In the Miyazaki strains, BjS10J-2 and BeL7 dominated at the low and high temperatures, respectively. It can be assumed that temperature of soil affects rhizobia growth in rhizospheres and could be a reason for the different competitive properties of B. japonicum and B. elkanii strains at different temperatures. In addition, competitive infection was suggested between the B. japonicum strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.