Abstract

Tin-doped nickel phthalocyanine thin films (Sn-doped NiPc) were deposited by thermal co-evaporation method. Doping concentration of tin in NiPc was controlled via different deposition rates between metal dopent and host organic material. Properties of the thin films doped by tin in the range of 3 to 15% were characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), UV-Visible spectroscopy and X-ray photoelectron spectroscopy (XPS). Furthermore, electrical properties of Al/Sn-doped-NiPc/ITO devices i.e. charge carrier concentration and carrier mobility were characterized by current-voltage and capacitance-voltage measurements. Microscopic results show clear evidence of the morphological transition from granular structure in undoped-film to rod-liked structure in the films doped more than 5%. Moreover, surface grain size exhibits the tendency to decrease with the increase of doping concentration. Optical properties reveal that the packing of NiPc molecules in all doping conditions is the combination of α-phase (majority) and β-phase (minority). However, evolution of β-phase NiPc is observed with the increase of doping concentration. Photoelectron analyses indicate shift of binding energy in both Ni2p and Sn3d levels corresponding to charge transfer between nickel-core and tin dopant. In addition, the electrical properties show the enhancement of the film’s conductivity due to the increase of charge carrier concentration with the higher Sn-doping level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.