Abstract

Atomic hydrogen has been found to have a great number of useful applications in the technological field of semiconducting materials. It has been used as a reagent in the epitaxial growth processes to control the incorporation of residual impurities. Atomic hydrogen can react with GaAs thus producing Ga- and As- hydrogen volatile species in controlled conditions. The atomic hydrogen can be produced in a chemical vapor deposition chamber using a hot tungsten filament. In this work we report the results of a study on GaAs layers grown using the close space vapor deposition technique with atomic hydrogen as a reagent. The conductivity type of the grown layers is closely related to the conductivity type of the GaAs source. We have grown p-type GaAs layers with l×1018 cm-3 hole concentration using GaAs sources with the same acceptor concentration. 10 K photoluminesence measurements were nlade on the source and the epitaxial GaAs layers. The PL spectra revealed that the residual impurities in the GaAs layers were originated from the source. The mirror like appearance of the grown layers as well as their electrical and optical characteristics demonstrate they can be used in the manufacture of GaAs semiconductor devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call