Abstract

In this study, we aimed to modify polymeric membranes by incorporating magnetic nanoparticles (NPs) to enhance their properties. The structural and chemical properties of magnetic NPs of iron oxide were prepared via a wet chemical method. Iron oxide nanoparticles (IONPs) were used as the core and were coated with polymers polyvinyle alcohol (PVA) and polyvinylpyrrolidone (PVP). The prepared samples were cast on a glass substrate using a casting knife. The aim of this study is the use of a specific type of magnetic NPs, coated with a polymer, and their application in membrane modification. We employed a facile synthesis method to coat the IONPs with the polymer and characterized the resulting material using various techniques, including X-ray Diffraction (XRD), scanning electron microscope (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and UV/Visible (UV–Vis) Spectroscopy for structural, morphological, chemical bonding, and optical properties studies. Our results show that the modified polymeric membranes exhibited improved properties, such as increased permeability and selectivity. We also observed that the magnetic NPs helped in the easy recovery of the modified membranes using an external magnetic field. Some agglomeration of IONPs was also observed, and the polymer membrane caused a decrease in crystallinity of IONPs. Overall, this study presents a promising approach for enhancing the properties of polymeric membranes using magnetic NPs and can potentially have practical applications in various fields, such as water treatment, food processing, and biotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call