Abstract

A high-quality disordered Nd3+:Ca3Gd2(BO3)4 (Nd3+:CGB) laser crystal was grown by the Czochralski method. The space group and effective segregation coefficient of Nd3+ were determined to be Pnma and 1.06, respectively. The thermal properties, including the average linear thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity were systematically measured for the first time. It was found that the thermal conductivity increases with increasing temperature, indicating glasslike behavior. The polarized spectral properties of the crystal were investigated, including the polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay. The spectroscopic parameters of Nd3+ ions in Nd3+:CGB crystal have been obtained based on Judd–Ofelt theory. The anisotropy of the spectral properties for different polarized directions was discussed. Additionally, the continuous-wave (CW) laser performance at 1.06 μm was demonstrated for the first time. The maximum output power of 603 mW was achieved with corresponding optical conversion efficiency of 8.33% and slope efficiency of 9.95%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.