Abstract

For the first time, fully cubic stabilized zirconia-based single crystals with large nitrogen contents and optimized anion vacancy concentrations, interesting for new electrochemical devices such as nitrogen sensors, were prepared by a two-step approach. This two-step approach combines growth of nitrogen-free zirconia single crystals via the skull melting method and their subsequent direct nitridation to form cubic nitrogen doped zirconia-based single crystals. In the initial step, zirconia crystals with various yttria contents (2, 3, 4 and 6mol%) were prepared by the skull-melting technique. As determined by X-ray powder diffraction, tetragonal stabilized crystals were obtained, containing monoclinic segregations, when the yttria content of the grinded crystals was below 4mol%. Subsequently, the crystals were nitrided with nitrogen gas at 1500°C using different reaction times. Nitrogen content and crystallographic identity of the nitrided samples were investigated, revealing successful nitrogen incorporation and, hence, full cubic stabilization of the initial nitrogen-free samples also for the lowest yttria content. The degree of deviation from the cubic fluorite-type structure is discussed with respect to crystallographic parameters (‘pseudo-cubic factor’ etc.). The stabilization of cubic or tetragonal phases to ambient temperature is related to the anion vacancy concentration with respect to different impacts of the anion vacancies generated either by yttria or nitrogen incorporation (effective vacancy concentration [Veff]).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call