Abstract

Strained-layer superlattice (SLS) structures, such as InGaAs/GaAsP lattice matched to GaAs, have shown great potential in absorption devices such as photodetectors and triple-junction photovoltaic cells. However, until recently they have been somewhat hindered by their usage of low-phosphorus GaAsP barriers. High-P-composition GaAsP was developed as the barrier for InGaAs/GaAsP strained-layer superlattice (SLS) structures, and the merits of using such a high composition of phosphorus are discussed. It is believed that these barriers represent the highest phosphorus content to date in such a structure. By using high-composition GaAsP the carriers are collected via tunneling (for barriers ≤30 A) as opposed to thermionic emission. Thus, by utilizing thin, high-content GaAsP barriers one can increase the percentage of the intrinsic in a p-i-n structure that is composed of InGaAs wells in addition to increasing the number of periods that can be grown for given depletion width. However, standard SLSs of this type inherently possess undesirable compressive strain and quantum size effects (QSEs) that cause the optical absorption of the thin InGaAs SLS wells to shift to higher energies relative to that of bulk InGaAs of the same composition. To circumvent these deleterious QSEs, stress-balanced, pseudomorphic InGaAs/GaAsP staggered SLSs were grown. Staggering was achieved by removing a portion of one well and adding it to an adjacent well. The spectral response obtained from device characterization indicated that staggering resulted in thicker InGaAs films with reduced cutoff energy. Additionally, these data confirm that tunneling is a very effective means for carrier transport in the SLS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call