Abstract

Timber production and carbon sequestration in trees in agroforestry systems (AFS) are key to productivity and climate change mitigation. There are no studies about dynamics of growth and carbon sequestration of Cordia alliodora during all plantation cycle. The objective of this study was to develop models for diametric growth and carbon sequestration in aboveground biomass of C. alliodora in AFS with coffee in Líbano, Tolima, Colombia. Nonlinear models of growth and carbon sequestration in aboveground biomass of C. alliodora in AFS with coffee were developed. A total of 90 trees, ranging in age from 1 to 19 years, were randomly selected in farms and measured (diameter at breast height -dbh- and total height -h) in AFS with a basal area of C. alliodora between 0.22 and 17.8 m2/ha. Timber volume and aboveground biomass were estimated with allometric models, while carbon was estimated by multiplying aboveground biomass by 0.47. The best-fit models were selected according to the coefficient of determination (R2), Akaike's information criterion (AIC), predicted residual error sum of squares (PRESS), biological logic and a residual analysis. The highest growth rate of this species was reached at 4–6 years for dbh and h (3.6 cm/year and 2.9 m/year, respectively) and at 20 years for timber and carbon (0.60 m3/tree/year and 88.9 kg C/tree/year, respectively). In 20 years, a C. alliodora tree would store 1.1 Mg C and a AFS with 60 trees/ha would sequester between 260 Mg CO2/ha in aboveground biomass. The results show that C. alliodora trees could be maintained in the field for more than 20 years, thus increasing the volume per individual and carbon sequestration for a longer time. This demonstrates the importance of this species mainly when timber production and carbon sequestration are priorities for its profitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call