Abstract

Understanding turfgrass physiological responses to deficit irrigation will help explain potential effects of this practice on turf quality and subsequent stresses. The objective of this study was to investigate the influence of deficit irrigation growth and physiology of ‘Falcon II’ tall fescue (Festuca arundinacea Schreb) and ‘Meyer’ zoysiagrass (Zoysia japonica Steud). Turf was subjected to deficit irrigation levels of 20%, 40%, 60%, 80%, and 100% of actual evapotranspiration (ET) from June to Sept. 2001 and 2002 in Manhattan, Kans. In an earlier study, minimum deficit irrigation levels required to maintain acceptable quality (MDIL) were determined. We compared growth and physiological parameters at these MDIL with turf irrigated at 100% ET. Tall fescue had a lower canopy vertical growth rate (30% lower), canopy net photosynthesis (Pn, 14% lower), and whole-plant respiration (Rw, 11% lower) in 1 of 2 years when irrigated at the MDIL compared with 100% ET; tiller number was not reduced at the MDIL. Water use efficiency (μmol CO2 per mmol H2O) in tall fescue increased by 15% at the MDIL relative to turf receiving 100% ET in 1 of 2 years. In zoysiagrass, the MDIL had no effect on any of the growth or physiological parameters measured. Reductions in canopy vertical growth rate at the MDIL in tall fescue during deficit irrigation would likely reduce mowing requirements. Across all deficit irrigation levels, Pn was more sensitive to deficit irrigation in both grasses than was Rw, which could potentially contribute to declines in canopy vertical growth rate, tiller number, and turf quality. Zoysiagrass exhibited higher water use efficiency than tall fescue, particularly at irrigation levels 60% or more ET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call