Abstract

Abstract In this paper we consider the equation ∇2 φ + A(r 2)X · ∇φ + C(r 2)φ = 0 for X ∈ ℝN whose coefficients are entire functions of the variable r = |X|. Corresponding to a specified axially symmetric solution φ and set C n of (n + 1) circles, an axially symmetric solution Λn*(x, η;C n) and Λn(x, η;C n) are found that interpolates to φ(x, η) on the C n and converges uniformly to φ(x, η) on certain axially symmetric domains. The main results are the characterization of growth parameters order and type in terms of axially symmetric harmonic polynomial approximation errors and Lagrange polynomial interpolation errors using the method developed in [MARDEN, M.: Axisymmetric harmonic interpolation polynomials in ℝN, Trans. Amer. Math. Soc. 196 (1974), 385–402] and [MARDEN, M.: Value distribution of harmonic polynomials in several real variables, Trans. Amer. math. Soc. 159 (1971), 137–154].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.